Extracellular finger domain modulates the response of the epithelial sodium channel to shear stress.

نویسندگان

  • Shujie Shi
  • Brandon M Blobner
  • Ossama B Kashlan
  • Thomas R Kleyman
چکیده

The epithelial sodium channel (ENaC) is regulated by multiple extracellular stimuli, including shear stress. Previous studies suggest that the extracellular finger domains of ENaC α and γ subunits contain allosteric regulatory modules. However, the role of the finger domain in the shear stress response is unknown. We examined whether mutations of specific residues in the finger domain of the α subunit altered the response of channels to shear stress. We observed that Trp substitutions at multiple sites within the tract αLys-250-αLeu-290 altered the magnitude or kinetics of channel activation by shear stress. Consistent with these findings, deletion of two predicted peripheral β strands (αIle-251-αTyr-268) led to slower channel activation by shear stress, suggesting that these structures participate in the shear stress response. The effects of mutations on the shear stress response did not correlate with their effects on allosteric Na(+) inhibition (i.e. Na(+) self-inhibition), indicating a divergence within the finger domain regarding mechanisms by which the channel responds to these two external stimuli. This result contrasts with well correlated effects we previously observed at sites near the extracellular mouth of the pore, suggesting mechanistic convergence in proximity to the pore. Our results suggest that the finger domain has an important role in the modulation of channel activity in response to shear stress.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Second transmembrane domain modulates epithelial sodium channel gating in response to shear stress.

Na(+) absorption and K(+) secretion in the distal segments of the nephron are modulated by the tubular flow rate. Epithelial Na(+) channels (ENaC), composed of α-, β-, and γ-subunits respond to laminar shear stress (LSS) with an increase in open probability. Higher vertebrates express a δ-ENaC subunit that is functionally related to the α-subunit, while sharing only 35% of sequence identity. We...

متن کامل

Role of the wrist domain in the response of the epithelial sodium channel to external stimuli.

The epithelial Na(+) channel (ENaC) is regulated by a variety of external factors that alter channel activity by inducing conformational changes within its large extracellular region that are transmitted to the gate. The wrist domain consists of small linkers connecting the extracellular region to the transmembrane domains, where the channel pore and gate reside. We employed site-directed mutag...

متن کامل

DegFlow FINAL 2

Mechanotransduction in Caenorhabditis elegans touch receptor neurons is mediated by an ion channel formed by MEC-4, MEC-10 and accessory proteins. To define the role of these subunits in the channel’s response to mechanical force, we expressed degenerin channels comprised of MEC-4 and MEC-10 in Xenopus oocytes and examined its response to laminar shear stress (LSS). Shear stress evoked a rapid ...

متن کامل

Boundary Shear Stress in a Trapezoidal Channel

This paper focuses on a hydraulic radius separation approach used to calculate the boundary shear stress in terms of bed and wall shear stress proposed in a trapezoidal channel. The average bed and sidewall shear stress in smooth trapezoidal open channels are derived after using Guo & Julien (2005) early equations taking a part of an investigation to cover both rectangular and trapezoidal chann...

متن کامل

Extracellular chloride regulates the epithelial sodium channel.

The extracellular domain of the epithelial sodium channel ENaC is exposed to a wide range of Cl(-) concentrations in the kidney and in other epithelia. We tested whether Cl(-) alters ENaC activity. In Xenopus oocytes expressing human ENaC, replacement of Cl(-) with SO4(2-), H2PO4(-), or SCN(-) produced a large increase in ENaC current, indicating that extracellular Cl(-) inhibits ENaC. Extracel...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 287 19  شماره 

صفحات  -

تاریخ انتشار 2012